
 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 1 of 31

Porting BSP to WinCE 6.0

System Analysis

Copyright  2008 CodeConcept
All rights reserved

Prepared by: CC Team
Last update: 5th December, 2008

Revision: 1.03

Revision Description Date By

1.01 First Draft 03 October, 2008 CC Team

1.02 Device driver related details added 10 November, 2008 CC Team

1.03 Porting BSP details added 05 December, 2008 CC Team

2008 is the year that this unpublished work was originally created. CodeConcept sp. z o.o., hereinafter referred to as
“CodeConcept”, owns all rights to this work and intends to maintain this work as confidential so as to maintain this
work as a trade secret. CodeConcept may also seek to maintain this work as an unpublished copyright. In the event
of an inadvertent or deliberate publication, CodeConcept intends to enforce its rights to this work under copyright
laws as a published work. Those having access to this work may not copy, use or disclose the information in this
work unless expressly authorized by CodeConcept to do so.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 2 of 31

Table of Contents

1. Introduction ... 4

1.1. Purpose .. 4

1.2. Scope .. 4

1.3. Definitions, Acronyms and Abbreviations .. 4

1.4. References .. 4

1.4.1. BSQUARE Site.. 4

1.4.2. Raza Microelectronics, Inc. Site ... 4

1.4.3. Microsoft MSDN Library for Windows Embedded CE 6.0 ... 5

1.4.4. MSDN Magazine, the Microsoft Journal for Developers ... 5

1.4.5. Windows Embedded MSDN Blog ... 5

1.4.6. MEDC – Microsoft Mobile & Embedded DevCon 2006 ... 5

1.4.7. WindowsForDevices site ... 5

2. Overview of Windows Embedded CE 6.0 changes ... 6

2.1. API Deployment Scheme... 6

2.2. Kernel-Mode Operation .. 6

2.3. Memory Architecture ... 6

2.4. Device Emulator ... 7

2.5. Cell Technologies .. 8

2.6. Location-Based Programming ... 8

2.7. Security Enhancements... 9

2.8. Development Tools ... 11

2.9. Shared Source and Windows CE Development .. 11

3. Device Drivel related details ... 11

3.1. OS Layout ... 11

3.2. Device Drivers model .. 17

3.2.1. Kernel-Mode Drivers ... 18

3.2.2. User-Mode Drivers .. 18

4. Changes required to port BSP ... 19

4.1. Introduction .. 19

4.2. Current state .. 20

4.3. Limitations .. 20

4.4. Changes .. 20

4.4.1. Boot Loader and KITL changes ... 20

4.4.2. OAE changes ... 20

4.4.3. Separate kernel, OAL, and KITL .. 21

4.4.4. Adopt the new OAL directory structure ... 22

5. Changes required to port OAL and drivers .. 25

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 3 of 31

5.1. Introduction .. 25

5.2. Current state .. 25

5.3. Limitations .. 25

5.4. Changes .. 26

5.4.1. Access Checking .. 26

5.4.2. Marshalling ... 26

5.4.3. Secure copy... 27

5.4.4. Thread permissions ... 27

5.4.5. User Interface ... 28

5.4.6. Embedded pointers ... 28

5.4.7. Handles ... 28

5.4.8. Callbacks from user drivers ... 28

5.4.9. APIs limitations ... 28

6. Time estimation ... 30

6.1. BSP conversion ... 30

6.2. OAL conversion ... 30

6.3. Drivers conversion .. 30

6.4. SDK generating ... 31

6.5. Testing .. 31

6.6. Estimations ... 31

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 4 of 31

1. Introduction

A new version of Windows CE triggers changes in CE projects’ design necessary to fit new system
requirements. In opposite to previous versions of Windows CE adjustments are significant as a
result of changes in kernel architecture.

1.1. Purpose
The purpose of the paper is to present differences between Windows Embedded CE 6.0 and
previous version of the Windows CE OS. It also includes information about all potential parts
of project/code that should be modified to convert CE 5.0 compliant BSP implementation to a
new Windows Embedded CE 6.0.

1.2. Scope
The analysis concerns AMD Alchemy Board Support Package for Windows CE 5.0 delivered by
BSQUARE Corporation to be used with RMI Alchemy™ DBAu1550™ Development Board.

1.3. Definitions, Acronyms and Abbreviations

SDB Standard development board

BSP A board support package (BSP) is software that implements and
supports an operating system (OS) on SDB.

KITL Kernel Independent Transport Layer

OEM Original Equipment Manufacturer

OAL OEM adaptation layer

1.4. References

1.4.1. BSQUARE Site
RMI Board Support Packages
http://www.bsquare.com/amd/bsp/amd.asp
Windows CE 6.0 Blog – User Mode and Kernel Mode Drivers, by Dean Ramsier
http://www.bsquare.com/blog/default-aug_21.asp

1.4.2. Raza Microelectronics, Inc. Site
MI Alchemy™ Au1550™ Processor
http://www.razamicroelectronics.com/products_alchemy/au1550_overview.htm
The RMI Alchemy™ DBAu1550™ Development Board
http://www.razamicroelectronics.com/products_alchemy/au1550_dev_product_brief.
htm

http://www.bsquare.com/amd/bsp/amd.asp
http://www.bsquare.com/blog/default-aug_21.asp
http://www.razamicroelectronics.com/products_alchemy/au1550_overview.htm
http://www.razamicroelectronics.com/products_alchemy/au1550_dev_product_brief.htm
http://www.razamicroelectronics.com/products_alchemy/au1550_dev_product_brief.htm

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 5 of 31

1.4.3. Microsoft MSDN Library for Windows Embedded CE 6.0

Windows Embedded CE
http://msdn2.microsoft.com/en-us/library/ms950422.aspx
Developing a Device Driver
http://msdn2.microsoft.com/en-us/library/aa910457.aspx
Developing an Operating System
http://msdn2.microsoft.com/en-us/library/aa923966.aspx

1.4.4. MSDN Magazine, the Microsoft Journal for Developers
Explore The New Features In Windows Embedded CE 6.0 by Paul Yao
http://msdn.microsoft.com/msdnmag/issues/06/12/WindowsCE/

1.4.5. Windows Embedded MSDN Blog
CE 5.0 application Compatibility on CE 6.0, by Mike Hall
http://blogs.msdn.com/mikehall/archive/2006/10/12/ce-5-0-application-compatibility-
on-ce-6-0.aspx
CE6 Drivers: What you need to know, by Sue Loh
http://blogs.msdn.com/ce_base/archive/2006/11/09/CE6-Drivers_3A00_-What-you-
need-to-know.aspx

1.4.6. MEDC – Microsoft Mobile & Embedded DevCon 2006
Windows CE 6.0 Architecture, by Douglas Boling, President Boling Consulting Inc.
http://download.microsoft.com/documents/australia/medc2006/Windows_CE6_Archi
tecture_Boling.ppt

1.4.7. WindowsForDevices site
Differences between Windows CE 5.0 and Windows CE 6.0, by K. Ashok Babu
http://www.windowsfordevices.com/articles/AT9457847627.html

http://msdn2.microsoft.com/en-us/library/ms950422.aspx
http://msdn2.microsoft.com/en-us/library/aa910457.aspx
http://msdn2.microsoft.com/en-us/library/aa923966.aspx
http://msdn.microsoft.com/msdnmag/issues/06/12/WindowsCE/
http://blogs.msdn.com/mikehall/archive/2006/10/12/ce-5-0-application-compatibility-on-ce-6-0.aspx
http://blogs.msdn.com/mikehall/archive/2006/10/12/ce-5-0-application-compatibility-on-ce-6-0.aspx
http://blogs.msdn.com/ce_base/archive/2006/11/09/CE6-Drivers_3A00_-What-you-need-to-know.aspx
http://blogs.msdn.com/ce_base/archive/2006/11/09/CE6-Drivers_3A00_-What-you-need-to-know.aspx
http://download.microsoft.com/documents/australia/medc2006/Windows_CE6_Architecture_Boling.ppt
http://download.microsoft.com/documents/australia/medc2006/Windows_CE6_Architecture_Boling.ppt
http://www.windowsfordevices.com/articles/AT9457847627.html

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 6 of 31

2. Overview of Windows Embedded CE 6.0 changes

2.1. API Deployment Scheme
In Windows CE 1.0 – 5.0 versions, the Win32 APIs were deployed using client/server
architecture to connect a caller to the target Win32 function through an interprocess
communication mechanism. So many context switches resulted in performance penalties.

In new CE 6.0 model:

– System APIs are moved out of their own user-mode processes and are placed into
kernel-mode DLLs instead that results in some performance improvements.

– Previous limitations on total number of processes (32) and the small virtual address
space (32MB) are removed.

– OEM code is separated from operating system code. They are now built into two
separate modules: the kernel operating system (kernel.dll) and the OEM Adaptation
Layer (nk.exe).

2.2. Kernel-Mode Operation
To run Windows CE, a CPU must support two privilege levels:

– Kernel mode – the higher privilege level;
– User mode – the lower privilege level.

Putting code in user mode helps the overall environment run more robustly and more
securely. However, mixing user-mode and kernel-mode code is generally slower than running
the system entirely in kernel mode.

With CE 6.0, only the mixed operating mode is supported with all applications being loaded
into user-mode memory, and all OS components loaded into kernel-mode memory.

To minimize the cost of calling across the privilege boundary some components have both a
user-mode and a kernel-mode incarnation. For example core system library:

– coredll.dll is user-mode
– k.coredll.dll is kernel-mode.

The expense is a larger operating system image.

2.3. Memory Architecture
Windows CE 1.0 – 5.0 Limits:

– Single virtual address space is divided into the 32 slots, with no overlap between
process address spaces,

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 7 of 31

– 32 processes at any one timed, each of which occupied its own process slot,
– 32 MB Virtual Memory per process,
– Upper half of user space is shared memory – Read / Write by all processes.

Windows CE 6.0 kernel brings a new memory architecture that eliminates the previous limits:

– Each process gets its own, truly private process address space. As a result no
application process can look into the address space of any other application process
(standard Win32 shared memory APIs need to be used to enable two processes to
read and write to the same memory).

– 32K processes – a theoretical maximum. The practical maximum is lower because
other types of kernel objects occupy space in the kernel handle table.

– 2 GB of Virtual Memory per process – larger address space per process,

Impact of the new memory architecture on existing software
Well-behaved applications should just run in their unmodified binary form on CE 6.0, since
memory is allocated using the same allocation APIs, and data is still stored using 32-bit virtual
memory pointers. In CE 6.0 large data blocks allocations can be satisfied with a call to
VirtualAlloc instead of shared memory allocation functions (ex. MapViewOfFile) from the
earlier CEs.
Generally speaking, most changes are limited to device drivers:

– Drivers that still need to access (read/write) data in an application's address space
need to run in kernel mode.

– Device driver could be run in user mode through the use of a user-mode device driver
process-udevice.exe.

2.4. Device Emulator
Windows CE has seen three generations of emulators:

– The first generation emulator supported Windows CE by directly calling the roughly
equivalent Windows NT functions. It was a good first start, but left much to be desired.

– The second generation emerged as a custom embedded platform using hardware
virtualization, running the same low-level instructions as a real device. It was a very
capable emulator, but had a drawback for developers who were focused on deploying
to non-x86 processors since it was built using the I86 instruction set.

– A third-generation emulator, which ships with CE 6.0, provides instruction-level
emulation of the ARM V4I instruction set. This emulator ships with the CE 6.0 Platform
Builder as the Device Emulator.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 8 of 31

This newest generation supports the ARM V4I instruction set. While the x86 instruction set
dominates on the desktop, it has not made the same inroads in the embedded world. That
honor belongs to the instruction sets designed and licensed by ARM Holdings, Ltd. of the UK.
The benefit of emulation at the machine instruction set level is binary compatibility.
Instead of building the x86 executable files for the emulator and a second set of ARM
executables for actual devices, you can create a single set of binaries and run them both. In
addition to being more convenient, it also enables a higher degree of testing confidence
because you test everywhere with the same executables without worrying about errors in
your setup scripts, or compiler or linker bugs.

2.5. Cell Technologies
To enable machine-to-machine communication, CE 6.0 includes the interfaces needed to
connect to mobile phone networks, support for making phone calls and sending SMS (text)
messages. CE 6.0 provides:

– cellcore.dll – extends the Win32 API to support a variety of mobile phone services
such as initiating a data connection, sending an SMS message, and so on,

– ril.dll – the driver for the Radio Interface Layer (RIL). It is a low-level interface for
connecting an application layer to the mobile phone hardware.

– Low-level components for the Wireless Application Protocol (WAP), including a kernel-
mode driver (wapdrv.dll) and a user-mode API (wap.dll).

– HTML-only browsers (no support for WAP browsing).
– Rich set of SMS service providers to enable the receipt from the mobile phone

network of SMS broadcast messages, notification messages (for services like voice
mail, fax, and e-mail), and status messages.

2.6. Location-Based Programming
Microsoft introduced support for Global Positioning System (GPS) APIs with Windows Mobile
5.0. Those same APIs, and the drivers to support them, are now available with CE 6.0.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 9 of 31

2.7. Security Enhancements
The security features that already exist in Windows CE:

– Ability for a Windows CE-powered device to maintain tight control over which
applications and DLLs are allowed to load and run (it is the centerpiece of Windows
CE security). Through the OEMCertifyModule function, a device can prevent any
unauthorized code from running. A common method for identifying authorized
modules is through the use of digital certificates. Device security can be set up in a
variety of different configurations. For example, in one configuration any unknown
modules-those without valid certificates-can be denied any system access.
Alternatively, this mechanism can be turned off so that all modules have complete
access to all system services.

– Another core security feature is the Cryptographic API, which allows applications to
encrypt and decrypt blocks of data using a variety of encryption algorithms. Encryption
algorithms are identified by symbolic names with the prefix CALG_, such as CALG_DES
and CALG_AES.

– Support for secure sockets layer (SSL), which provides secure HTTP connections.
– Virtual Private Networking (VPN) is supported through the point-to-point tunneling

protocol (PPTP).
– To enable secure connections with server systems, Windows CE provides support for a

variety of authentication mechanisms, including the Windows NT LAN Manager
protocol and the more robust Kerberos authentication protocol.

– The Credential Manager.
– Support for Smart Cards.
– The Data Protection API (DPAPI).
– Support for public key certificates (PKI).
– The Local Authentication Subsystem (LASS).

The new security features with CE 6.0:

– There is a strict separation of user-mode code from kernel-mode code. Enhanced
validation checks of the Protected Server Library (PSL) and I/O Control's (IOCTL)
parameters that are passed from user mode to kernel mode are performed, improving
kernel mode security and stability.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 10 of 31

– The perimeter security of a system can be vastly improved by supporting a secure
loader. A secure loader ensures that only trusted code gets to run on a system. In
Windows CE 5.0, the operating system provided a loader hook but OEMs had to write
their own secure loader. CE 6.0, in contrast, ships with a built-in secure loader. The
trust decisions of the loader are certificate-based-this means that all code that runs on
the system has to be signed. The secure loader, if enabled, inspects the code signature
and if the signature is signed by a trusted certificate then that code is allowed to run. If
not, the module load fails. The OEM has control over what certificates are trusted and
thus has control over the code that gets to run on the system.

– Another area in which security improvements have been made is the Windows CE OS
Design (or the New Platform) Wizard. When a platform is configured with a feature
that may compromise the security of the device, a security warning is issued. For
example, the following Security Warning from the Design Wizard shows the
notification displayed when the Object Exchange (OBEX) Protocol is included in a
platform. Details of the potential compromise are provided, to help platform
developers address the potential problems early in the platform development process.

– Support for a secure boot loader – this feature ensures that downloaded operating
system (NK.BIN) images contain valid digital signatures before allowing the OS images
to be installed and run on a system.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 11 of 31

2.8. Development Tools
Prior to CE 6.0, the Windows CE team shipped a standalone product called Platform Builder.
With CE 6.0, the platform development tools are integrated into Visual Studio® 2005. Visual
Studio is, of course, the premier development tool for both client and Web development; now
this same tool is available to support Windows CE. Features that have benefited application
developers-like IntelliSense®, syntax checking, syntax highlighting, outline view, and function
completion-can be used in the development of custom Windows CE platforms.

Some Platform Builder terms have changed to better fit into the Visual Studio paradigm:

– A Windows CE 5.0 Workspace is now a Solution in CE 6.0.
– A Windows CE 5.0 Project (an IDE-defined application or DLL) is now a Subproject in CE

6.0.

2.9. Shared Source and Windows CE Development
With CE 6.0, Microsoft continues a program that began with Windows CE 3.0 – the shared
source program. Taking a cue from the open source movement, Microsoft began by making
available a significant portion of the source code for Windows CE to anyone willing to
download the Evaluation edition of the Windows CE Platform Builder.

Developers who build applications to run on Windows CE have gotten tangible benefits from
other open source projects. Perhaps the best known is the OpenNETCF project (available for
download), an extension to the .NET Compact Framework.

Microsoft has directly sponsored several source code projects such as the Bluetooth project,
which provides managed code classes to simplify the use of Bluetooth in Windows CE-based
applications. Another is the webcam driver used to kick-start designs with webcams when no
drivers were publicly available. A third project sponsored by Microsoft is the digital video
recorder (DVR) project, to support the creation of Windows CE-powered video recorders.

3. Device Drivel related details

3.1. OS Layout
In all Windows CE 1.0 – 5.0 versions, the Win32 APIs were deployed using client/server
architecture similar to that found in early versions of Windows NT.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 12 of 31

In Windows NT 3.5, for example, all GUI functions reside in a single process: csrss.exe, the
client-server runtime subsystem. When functions like CreateWindow or TextOut are called,
the CSRSS process is triggered through an interprocess communication mechanism called
local-procedure calls (LPCs). Owing to performance penalties of so many context switches
between the heavyweight Windows NT processes, this architecture was formally abandoned
in Windows NT 4.0 (released in 1996). At the time, all the formerly user-mode API libraries
were transferred into kernel mode.

A similar change is taking place with the release of Windows Embedded CE 6.0. For all
previous versions, Windows CE also used a client/server mechanism to connect a caller to the
target Win32 function. There are similarities, but it is important to note the differences
between the Windows CE implementation and the one on Windows NT. One difference is
that Windows CE used a much more lightweight process than Windows NT, and so the
performance cost was not as high. Unlike Windows NT, Windows CE was designed to be
configurable. And the use of processes to deploy system APIs allowed the demands for ROM
and RAM to be gated by how much of the overall operating system was needed for a specific
device. For example, a device could be configured to run with just one API process, the
system kernel (nk.exe). Other devices that need GUI support would also need to run the GUI
(gwes.exe) process.

Although the new model does provide some performance improvements, the real motivating
factor for making the change is to remove limitations that could bottleneck development on
the next generation of devices. Those limitations, which are well known to Windows CE
programmers, include the limit on total number of processes (32), and the small virtual
address space (32MB) of previous generations of Windows CE kernels.

Many things have changed in the decade since the first kernel was deployed. Devices today
can have more capable hardware: faster CPUs, more storage, a color LCD display screen, and
so on. Today's designs don't need the tiny memory footprint of yesterday's models, and so a
redesign was in order. With CE 6.0, system APIs are moved out of their own user-mode
processes and are placed into kernel-mode DLLs instead.

Changes to Major Modules in Windows Embedded CE 6.0

Windows CE 5.0
Process

Windows Embedded
CE 6.0 DLL

Description

nk.exe (OAL + kernel) nk.exe (OAL)
kernel.dll (kernel)

OEM code is getting separated from CE
kernel code starting with CE 6.0

filesys.exe filesys.dll Registry, file system, and property
databases

device.exe device.dll Manages kernel-mode device drivers

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 13 of 31

device.exe udevice.exe New to CE 6.0, a separate process to
manage user-mode device drivers

gwes.exe gwes.dll Graphical and windowing event subsystem

services.exe servicesd.exe Host process for system services

services.exe services.exe Command-line interface to configure
services

While this reorganization of the operating system was underway, another important change
was made: OEM code was separated from operating system code. Previously, a hardware
designer created a low-level set of routines called the OEM Adaptation Layer (OAL), and that
component was statically linked to the operating system kernel. The OAL and the kernel
appeared as a single executable, nk.exe. In CE 6.0, these two components are now built into
two separate modules: the kernel (kernel.dll) and the OEM Adaptation Layer (nk.exe).

Kernel-Mode Operation
To run Windows CE, a CPU must support two privilege levels:

– Kernel mode – the higher privilege level;
– User mode – the lower privilege level.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 14 of 31

Any memory that is allocated for either code or data is assigned to one of these two modes.
Putting code in user mode helps the overall environment run more robustly and more
securely. However, these benefits are not free, because mixing user-mode and kernel-mode
code is generally slower than running the system entirely in kernel mode.

In previous versions, Windows CE could be configured for all kernel-mode operation, or for
mixed-mode operation using both kernel mode and user mode. With CE 6.0, only the mixed
operating mode is supported with all applications being loaded into user-mode memory, and
all OS components loaded into kernel-mode memory.

User-Mode and Kernel-Mode System Libraries

Component User-Mode Kernel-Mode

Core system library coredll.dll k.coredll.dll

Device driver helpers ceddk.dll k.ceddk.dll

Credential provider credsrv.dll k.credsvr.dll

IP network helper API iphlpapi.dll k.kphlpapi.dll

Multimedia timer mmtimer.dll k.mmtimer.dll

Process, thread, and memory helpers toolhelp.dll k.toolhelp.dll

Windows Sockets ws2.dll k.ws2.dll

Windows Sockets service provider interface wspm.dll k.wspm.dll

As shown in table, some components have both a user-mode and a kernel-mode incarnation.
This deployment helps minimize the cost of calling across the privilege boundary, at the
expense of a larger operating system image.

Memory Architecture
Windows CE 1.0 – 5.0 Limits:

– Single virtual address space is divided into the 32 slots, with no overlap between
process address spaces,

– 32 processes at any one timed, each of which occupied its own process slot,
– 32 MB Virtual Memory per process,
– Upper half of user space is shared memory – Read / Write by all processes.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 15 of 31

Windows CE 6.0 kernel brings a completely new memory architecture that eliminates the
previous limits:

– Different structure of process address spaces – each process gets its own, truly
private process address space (it appears very similar to the process address space in
desktop versions of Windows, such as Windows XP).

– 32K processes – this is a theoretical maximum, based on a limit on the storage of
kernel handles. CE 6.0 can accommodate a maximum of 64K kernel handles, and a
process requires a minimum of two handles-one for the process itself, and one for the
process's thread. The practical maximum is lower because other types of kernel
objects occupy space in the kernel handle table.

– 2 GB of Virtual Memory per process – larger address space per process,

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 16 of 31

The new memory architecture impacts existing software
Generally speaking, most changes are limited to device drivers. While the size of the process
address space is much larger, well-behaved applications shouldn't notice, since memory is
allocated using the same allocation APIs, and data is still stored using 32-bit virtual memory
pointers. The new memory architecture does make some things easier, particularly for
applications that needed to allocate very large blocks of memory-greater than 10MB, for
example-such as might be needed to hold a high-resolution image read in from a digital
camera sensor. Previously the need for large data blocks had to be satisfied by allocating with
the shared memory allocation functions (e.g. MapViewOfFile). Starting with CE 6.0, large
allocations can just as easily be satisfied with a call to VirtualAlloc.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 17 of 31

Aside from the increase in size of the process address space, the other change introduced
with this memory architecture is the truly private process address space. Prior to CE 6.0, it
was generally quite easy for one process to look into the address space of another process. In
the now defunct slotted address scheme, the currently running process is mapped into slot
zero. This was done by fixing up all pointers to reference memory in the range of zero to
32MB. By calling a function like MapPtrProcess, the currently running process can take a
pointer from another process and access that memory directly in the process slot (in the
range 32MB-64MB for slot 1, 64MB-96MB for slot 2, and so forth). With the implementation
of a private process address space, no application process can look into the address space of
any other application process. Instead, you will need to use the standard Win32 shared
memory APIs to enable two processes to read and write to the same memory.

One reason that this new architecture is likely to have the biggest impact on device drivers is
that existing Windows CE device drivers often use functions like MapPtrProcess to read or
write directly in an application's address space. In CE 6.0, drivers that still need to access data
in an application's address space need to run in kernel mode. This is accomplished by linking
to the appropriate set of kernel libraries (k.coredll.dll) instead of their user-mode
counterparts.

In some cases, it might be necessary for a device driver to run in user mode instead of in
kernel mode. For example, there might be a driver for which you don't want to grant full
kernel mode privileges. Such a driver can be run in CE 6.0 through the use of a user-mode
device driver process-udevice.exe.

3.2. Device Drivers model
Windows Embedded CE 6.0 introduces new third-generation kernel architecture to support
kernel mode drivers.

In Windows CE 1.0 – 5.0 device drivers were executed in the device.exe that was a user-mode
process like other applications with the following shortcomings:

– User-mode memory limitations.
– Decreased performance due to inter-process calls between the application, driver, file

system and kernel.
– Risk of shutting down the entire process with all drivers by a corrupt driver (all drivers

were located in the same process space).

CE 6.0 introduces two different device driver models to increase system performance or
robustness and security:

– Kernel-Mode Drivers – functionality of the old device.exe moved into the kernel,
– User-Mode Drivers – introduced a new user device process (udevice.exe).

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 18 of 31

3.2.1. Kernel-Mode Drivers

In CE 6.0, Filesys.exe (file system), device.exe (device drivers), and GWES.exe
(Graphics, Windowing, and Events Subsystem) have been moved from user mode to
kernel mode. As a result, user-mode process initiating a driver access does not need to
be switched out, because it coexists (is resident in memory at the same time) with the
kernel.
Kernel-mode drivers are loaded inside of the kernel by device.dll that resembles
deprecated device.exe model. Elimination of expensive inter-process calls increases
performance.
However, as a part of the kernel, kernel-mode drivers have full privileges for the entire
kernel address space. Therefore they must be very well tested and robust, because
some memory corruption caused by defective driver could easily crash the kernel and
entire system.

3.2.2. User-Mode Drivers

User-mode drivers are still supported through a user mode driver manager called
udevice.exe, interestingly; with CE 6.0 you can have multiple instances of udevice.exe,
each hosting a single user-mode driver (or a group of user-mode drivers). Such drivers
running in their own processes are isolated from the kernel and the rest of the system,
so in case of failure only their copies of udevice.exe are affected while the rest of the
system remains untouched.

In this mode drivers loose some performance, but overall system robustness and
security is increased.

To load a driver into user-mode instead of the default kernel-mode, a new bit defined
in the Flags registry key must be set. User-mode driver model has very few differences
to kernel-mode drivers so user-mode driver can be loaded into kernel-mode with no
changes. To hide from applications how a particular driver was loaded, communication
between user-mode applications and the user-mode driver pass through the user-
mode driver reflector (a new kernel component), which helps with buffer marshalling.
The reflector also assists the user-mode driver with operations that user-mode code is
not normally allowed to make, like mapping physical memory.

Drivers running inside a user-mode process follow their restrictions in use of certain
APIs such as VirtualCopy (ex. limited to use it for only the memory space defined in the
registry to restrict arbitrarily accessing any hardware resource in the system).

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 19 of 31

Besides, SetKMode function and setting process permissions (to access other
processes), are no longer supported. Consequently, drivers using such techniques have
to be revised.

Summing up, BSP developers could now choose between:

– High performance kernel-mode driver,
– More protected user-mode driver – suitable for untrusted third party drivers

or unstable drivers that can be tested in user-mode and then moved to kernel-mode.

4. Changes required to port BSP

A board support package (BSP) is a software that implements and supports an operating system
(OS) on a standard development board (SDB). It typically consists of a boot loader, OEM adaptation
layer (OAL), device drivers, and run-time image configuration files.
This point will describe a process of porting BSP for „RMI Alchemy™ DBAu1550™ Development
Board” dedicated for Windows CE 5.0 to new IDE with support for Windows Embedded CE 6.0.
Information about required changes in OAL and devices drivers will be described in details in next
point of the document.

4.1. Introduction
The BSP porting analysis will be cut down to “RMI Alchemy™ DBAu1550™ Development
Board”. This development board is an integrated hardware and software system that
leverages the power of the Au1550™ security network processor - a MIPS-based™ System-on-
a-Chip (SoC) with integrated security technology developed by SafeNet for wired and wireless
applications where security is important. The DBAu1550 development board is a turnkey
solution that brings processor, memory and peripherals together on a single board, along with
debugging assist features and software.
The processor accelerates networking and remote access applications such as gateways and
network addressable storage (NAS) units, wireless access points and Voice over Internet
Protocol (VoIP) environments. Low power consumption enables the Au1550 processor to
support battery and Power-over-Ethernet applications.
The DBAu1550 development board underscores RMI’s commitment to providing customers
with integrated systems that address their hardware and software needs, and positions RMI
as a valued partner in the development of future access and network solutions.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 20 of 31

4.2. Current state
There are two versions of BSP dedicated to the hardware described above: for Windows CE
4.2 and for Windows CE 5.0. For further analysis we assume that the conversion will be done
for Windows CE 5.0.

4.3. Limitations
The porting process will be done with the following assumptions:

 The new BSP will be based on one of existing BSPs for MIPSII processor delivered by
Microsoft together with Platform Builder for CE 6.0 plug-in to Microsoft Visual Studio
2005

 The analysis is done basing on available BSP sources for Windows CE 5.0 for „RMI
Alchemy™ DBAu1550™ Development Board” with RMI Db1550 processor.

 Migration will be done according to requirements and recommendations from
Microsoft.

 Migration will be done for new IDE created for Windows Embedded CE 6.0 – Platform
Builder for CE 6.0 for Microsoft Visual Studio 2005

4.4. Changes
The easiest way to create a BSP is to clone the existing BSP that is designed for similar
hardware. Platform Builder includes a BSP for each supported CPU and for associated core
logic or chipsets.
The following list presents various aspects that should be taken into consideration during
migration process from Windows CE 5.0 to Windows Embedded CE 6.0 and to a new IDE
(Microsoft Visual Studio 2005 with Platform Builder for CE 6.0 plug-in).

4.4.1. Boot Loader and KITL changes

In previous releases, exception handling using __try / __except was not supported in
boot loaders and KITL. These components are linked to the same limited functionality
libraries. The libraries defined exception handling symbols that caused a link-time build
break if exception handling was used.
In Windows Embedded CE 6.0, exception handling has been enabled for the KITL
component, but not for the boot loader (which runs prior to kernel initialization).
To prevent random crashes in the boot loader phase, you must explicitly ensure you do
not use exception handling in the boot loader code.

4.4.2. OAE changes
Minimizing changes to the OAL is one of the goals for the new BSP design in Windows
Embedded CE 6.0. To meet this goal in Windows Embedded CE each module provides a
table of function pointers for use by the other modules:

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 21 of 31

 Kernel exports NKGLOBAL with pointers to functions and global variables. To
prevent other modules code reorganization was added stub library called
NkStub, which exports all the functions defined in the NKGLOBAL structure.
This for example allows any OAL call to an exported kernel function to be
automatically routed through NKGLOBAL.

 OAL exports an OEMGLOBAL table with OAL functions and global variables.
As with NKGLOBAL, there is a wrapper library oemstub.lib that wraps the
OAL exports.

Besides nkstub.lib and oemstub.lib, there are a few additional libraries in CE6 for OEM
use:

 Kitlcore.lib: This is a replacement for kitl.lib, implementing the KITL protocol
and the initialization of the kitl.dll interface with the NKGLOBAL and
OEMGLOBAL structures.

 Nkldr.lib: This library implements KernelInitialize / KernelStart, to link into
oal.exe.

 Oemmain.lib: This library implements the OEMInitGlobals function which
exchanges function pointers with the kernel.

4.4.3. Separate kernel, OAL, and KITL

In Windows Embedded CE 6.0, the kernel and OEM code are divided into the following
three components:

 Oal.exe - contains the startup code and the OEM adaptation layer (OAL)
implementation. This component was previously named Kern.exe.

 Kernel.dll - contains the OAL-independent kernel implementation.

 Kitl.dll - contains the platform-specific KITL support.

The goals for this design are to:

 Minimize OAL changes

 Clearly define the functions that the OAL can and cannot use

 Provide version information between components to provide forward
compatibility

This model provides the following advantages:

 Allows Microsoft to update the kernel for retail devices without going through
the OEM because the kernel is no longer dependent on the OAL.

 Simplifies the debugging process with an instrumented kernel. You only need
to include a new instrumented Kernel.dll into the release directory and then re-
make the run-time image.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 22 of 31

 Provides OEMs with a binary-only version of the platform, which they can give
to their customers.

 Makes loadable KITL possible.

 Enables all communication between the OEM code and the kernel to take place
through well-defined interfaces.

4.4.4. Adopt the new OAL directory structure

In Windows Embedded CE 6.0, the OAL directory structure in Windows CE 5.0 was
modified to reflect the separation of the OAL, KITL, and the kernel. Microsoft
recommends that OEMs adopt the new directory structure when migrating their BSPs
to Windows Embedded CE 6.0.
Microsoft recommends that OEMs adopt a new directory structure to reflect these
changes. This is optional. However, OEMs must use the new names for the
executables being built because this is not optional.

Recommended BSP Directory Structure

\Platform\<Hardware
Platform Name>

subdirectory
Description

Cesysgen Contains a makefile for filtering any of the configuration
files in the files directory.

Files Contains project-specific files for building the run-time
image, initial directory structure, initialized databases,
and initialized registry.

Src Contains the boot loader, OAL, and include files for the
hardware platform.

Src\Bootloader Contains all the boot loader-specific code.

Src\Bootloader\Eboot Contains the boot loader source files.

Src\Common Contains all the code common to the boot loader and
OAL.

Src\Drivers Contains the local BSP drivers.

Src\Inc Contains hardware platform-specific include files.

Src\Oal\OalLib Contains the hardware platform-specific OAL code.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 23 of 31

Src\Oal\OalExe Contains the build files, and possibly stub functions, for
building the basic OAL image (without KITL support or
with KITL in Kitl.dll).

This builds Oal.exe.

Src\Kitl Contains the build files and source code for building
Kitl.dll.

Previous BSP Directory Structure

\Platform\<Hardware
Platform Name>

subdirectory
Description

Cesysgen Contains a makefile for filtering any of the configuration
files in the Files directory.

Files Contains project-specific files for building the run-time
image, initial directory structure, initialized databases,
and initialized registry.

Src Contains the boot loader, OAL, and include files for the
hardware platform.

Src\Bootloader Contains all the boot loader specific code.

Src\Bootloader\Eboot Contains the boot loader source files.

Src\Common Contains all the code common to the boot loader and
OAL.

Src\Drivers Contains the local BSP drivers.

Src\Inc Contains hardware platform-specific include files.

Src\Kernel Contains device-specific source code files for building and
linking the kernel and OAL.

Src\Kernel\Kern Contains build files, and possibly stub functions, for
building the basic kernel image.

Src\Kernel\Kernkitl Contains build files, and possibly stub functions, for

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 24 of 31

building a kernel with Kernel Independent Transport
Layer (KITL) support.

Src\Kernel\Kernkitlprof KernKitlProf.exe does not have an equivalent in Windows
Embedded CE 6.0. If your OAL implements profiling
support, this should always be included in Kern.exe
and/or KernKitl.exe.

Src\Kernel\OAL Contains the hardware platform-specific OAL code.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 25 of 31

5. Changes required to port OAL and drivers

5.1. Introduction
Additionally to changes required for BSP, it is very important to verify existing OAL layer and
device drivers’ implementation. In most cases small-scale changes are sufficient to fit new
Windows Embedded CE 6.0 requirements. Only for non-standard programming solutions (or
in the case of undocumented functions usage) it might be necessary to redesign internal built
or interface.

5.2. Current state
The operations described below affect implementation of OEM and board drivers.

Driver elements list

AUDIO

 Au1550 PSC AC97 Audio

 PSC I2S Audio
DISPLAY

 Alchemy ATI Rage XL

 Silicon Motion Voyager
Local Area Networking (LAN) devices

 Alchemy Ethernet
PCMCIA (PC Card)

 Alchemy PCMCIA
Serial

 Alchemy Serial
USB Host Controllers

 Alchemy USB (OHCD)
USB Function

 Alchemy USB Function
Storage Devices

 Highpoint HPT371/372 IDE Controller

 Au1550 NAND FLASH Controller
SPI Controller

 Au1550 PSC SPI Controller

5.3. Limitations
Further divagations will be done for drivers that are a part of Windows CE 5.0 BSP for „RMI
Alchemy™ DBAu1550™ Development Board”.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 26 of 31

5.4. Changes
For Windows CE 5.0 and earlier, drivers ran in a Device.exe process. For Windows Embedded
CE 6.0, kernel drivers run in the NK.exe process. Due to the updated driver model, Windows
CE 5.0 and earlier compatible drivers should be modified in order to work properly with
Windows Embedded CE 6.0. Stability and security are also extremely important for drivers, as
an instable driver in Windows Embedded CE 6.0 can potentially cause the OS to fail. CE 6.0
introduces new support for user mode servers, drivers (managed by user mode version of
driver manager: udevice.exe) and services.

5.4.1. Access Checking

In Windows CE 5.0 and earlier, MapCallerPtr was used to validate a region of memory
pointed to by a pointer parameter. MapCallerPtr was used in the I/O controls (IOCTLs)
to validate a pointer parameter passed by a calling process. Device drivers in Windows
CE 5.0 ran with a relatively high privilege, and had adequate access to memory.
MapCallerPtr was used to verify both pointer parameters as well as embedded
pointers.

In Windows Embedded CE 6.0, the kernel performs a full access check of buffer pointer
parameters. This takes the responsibility for pointer parameter validation away from a
device driver. However, a driver still must verify that the caller has access to memory
addressed by embedded pointers. A driver must use the CEOpenCallerBuffer and
CeCloseCallerBuffer functions to verify if the caller has access to the memory that is
pointed to by embedded pointers.

CeOpenCallerBuffer can be called with the ForceDuplicate parameter set to TRUE. This
allocates a temporary heap buffer in the current process. If you choose to copy an
input buffer for security purposes, and use CeOpenCallerBuffer for access checking,
you can set ForceDuplicate to TRUE. This allows to perform both the input buffer copy
and the access check with one function call.

5.4.2. Marshalling
For Windows CE 5.0 and earlier, the MapCallerPtr function performed marshalling for
pointers too. A driver called MapCallerPtr with parameters as well as with embedded
pointers to validate and marshal.

For Windows Embedded CE 6.0, marshalling depends on the way a pointer is used:
synchronously or asynchronously. If a pointer parameter or embedded pointer is used
synchronously, the address space of the calling process is accessible for the duration of
a call into the driver. This eliminates any requirements for marshalling.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 27 of 31

However, if a pointer is used asynchronously, it is critical that the caller buffer is
accessible when the caller's address space is unavailable. This means that direct access
is not possible for any kind of asynchronous work after the call has returned. Windows
Embedded CE 6.0 includes the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions for drivers to marshal pointer parameters and
embedded pointers when asynchronous access is required.

5.4.3. Secure copy

Performing a secure copy of input parameters is one of the best practices for
developing a device driver for Windows Embedded CE. It is not safe for a driver to
access the buffer of a caller. It is possible that the caller may be malicious or even
poorly written. The solution for these data integrity problems is to perform a secure
copy. If a driver must access the buffer of a caller asynchronously, it must call the
CeAllocAsynchronousBuffer and CeFreeAsynchronousBuffer functions. This eliminates
the need to perform an additional parameter’s copy. If a driver accesses parameters
synchronously, CeAllocDuplicateBuffer and then CeFreeDuplicateBuffer should be used
to secure copy helper functions to copy the buffer of the caller.

If a developer handles embedded pointers by calling the CeOpenCallerBuffer function
for access checking, he/she should set the ForceDuplicate parameter to TRUE to obtain
a local copy of the buffer of the caller. This allows him/her to avoid an additional
function call to CeAllocDuplicateBuffer. The local buffer is then freed upon calling
CeCloseCallerBuffer.

5.4.4. Thread permissions
For Windows CE 5.0 and earlier, process server libraries had access to the buffer of a
caller since execution took place in the context of the caller's thread. Other threads,
such as ISTs did not have access to the buffer of the caller and had to call the
SetProcPermissionsfunction to set the internal permissions bitmask for the thread.
This enabled access to the address space of the caller's process. The
SetProcPermissions function is no longer supported in Windows Embedded CE 6.0, and
should be removed from drivers. The CeAllocAsynchronousBuffer function marshals
the buffer of the caller into the virtual memory of the kernel. This eliminates the need
to change the permission of the thread.

For Windows CE 5.0, a driver should save the permissions of a calling process and then
set the driver's thread permissions to include the calling process, when needed. After
the calling process finishes, the driver's thread permissions should be reset.

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 28 of 31

5.4.5. User Interface
For Windows CE 5.0 and earlier, drivers ran in user mode and could display a user
interface (UI) with no restrictions. For Windows Embedded CE 6.0, the kernel cannot
display a UI and a kernel driver must forward a display request to display the required
UI to a user mode component. The CeCallUserProc function should be used in this
case. Developer need to create a user mode component DLL file to implement the
required UI portion of the code, and export this functionality using a function. The DLL
file and function name are passed to CeCallUserProc with in and out buffers to achieve
required driver UI functionality.
CeCallUserProc does NOT allow embedded pointers. All arguments must be stored
inside the single "in" buffer passed to CeCallUserProc, and return data must be stored
in the single "out" buffer. The problem is, if kernel code calls user code, user code
cannot use CeOpenCallerBuffer or any other method to get the contents of kernel
memory.

5.4.6. Embedded pointers
User-mode drivers cannot receive embedded pointers from the kernel (kernel drivers).
The best way is reorganize the communication between drivers to "flatten" the
communication structure - all the data have to be stored directly in the IN and OUT
buffers instead of referenced via embedded pointers.

5.4.7. Handles
For previous versions of CE, a handle value was global for the whole system. In a lot of
cases, handles could be passed between processes. For CE6, handles are unique for
each process.

5.4.8. Callbacks from user drivers
Call-backs from a user-mode driver to any kernel process are prohibited. If a developer
moves a bus driver to user mode, he/she has to move the client drivers to user mode
too. Developer can't have the client driver in the kernel since he/she cannot call back
to the bus driver. Bus driver and all of its client drivers should be placed in the same
udevice.exe instance, so that the callbacks are all within a single process.

5.4.9. APIs limitations

 SetKMode function - not supported

 SetProcPermissions / GetCurrentPermissions function – not supported

 MapCallerPtr function - not supported

 MapPtrToProcess function - not supported

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 29 of 31

 VirtualCopy function – in case of calling VirtualCopy in user mode drivers, the
reflector will check addresses to make sure your driver is allowed to access
requested physical address

 OAL layer can not use kernel functions that are not exported

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 30 of 31

6. Time estimation

The time estimation below is done for BSP for „RMI Alchemy™ DBAu1550™ Development Board”
delivered for BSQUARE Company. Please, note that it is impossible to list general time values for
any BSP conversion, because it hardly depends on relevant BSP implementation (especially on the
programming techniques used to implement each driver).

Below are listed all actions that need to be done to prepare full BSP conversion from Windows CE
5.0 to Windows Embedded CE 6.0. Timing includes also project conversion required as a
consequence of new IDE for Windows Embedded CE 6.0.

6.1. BSP conversion
BSP conversions should be done with compliance of following elements:

 Folder structure changes

 Windows Embedded CE 6.0 changes

 Required IDE changes
These elements are described in point 4 of the document.

6.2. OAL conversion
This issue includes conversion of the layer responsible for assure communication between
kernel and hardware. For more details about the issue, please, see point 5.

6.3. Drivers conversion
Drivers’ conversion process contains conversion of all drivers that are a part of BSP except
OAL driver mentioned above. This step is also described in point 5 of the document.
Here is a list of drivers to be converted:

 AUDIO - Au1550 PSC AC97 Audio

 AUDIO - PSC I2S Audio

 DISPLAY - Alchemy ATI Rage XL

 DISPLAY - Silicon Motion Voyager

 Local Area Networking (LAN) devices - Alchemy Ethernet

 PCMCIA (PC Card) - Alchemy PCMCIA

 Serial - Alchemy Serial

 USB Host Controllers - Alchemy USB (OHCD)

 USB Function - Alchemy USB Function

 Storage Devices - Highpoint HPT371/372 IDE Controller

 Storage Devices - Au1550 NAND FLASH Controller

 SPI Controller - Au1550 PSC SPI Controller

 Porting BSP to WinCE 6.0 5th December, 2008
 System Analysis

PORTING BSP TO WINCE 6.0 - SYSTEM ANALYSIS VER 1.03 081205 CC.DOC Page 31 of 31

6.4. SDK generating
The issue contains the time necessary to prepare complete SDK for Windows Embedded CE
6.0.

6.5. Testing
Testing process contain debugging and testing of the prepared BSP and SDK with the target
board. It should contain also execution of acceptance tests procedure required by customer.

6.6. Estimations

Conversion step Time [in days]
BSP 10

OAL 14

Driver - Au1550 PSC AC97 Audio 4

Driver - PSC I2S Audio 4

Driver - Alchemy ATI Rage XL 4

Driver - Silicon Motion Voyager 4

Driver - Alchemy Ethernet 4

Driver - Alchemy PCMCIA 4

Driver - Alchemy Serial 4

Driver - Alchemy USB (OHCD 4

Driver - Alchemy USB Function 4

Driver - Highpoint HPT371/372 IDE Controller 4

Driver - Au1550 NAND FLASH Controller 4

Driver - Au1550 PSC SPI Controller 4

SDK 4

Testing and verification 20

Total 96

